¿Conoces a SunFields?

¿Conoces a SunFields?

Sunfields es un proveedor de equipos fotovoltaicos desde el año 2007, ha cubierto el suministro de proyectos solares en casi todo los continentes, lo que le ha aportado una extensa experiencia en la evaluación de calidad de los productos que trabajan.

Seguir leyendo
publicidad kit media
  1. Portada
  2. >
  3. Tecnología Verde

Crean un modelo 3D de la conjuntiva para estudiar las enfermedades inflamatorias de la superficie ocular

En el ámbito ocular, normalmente no se pueden obtener grandes muestras de tejido de conjuntiva de los pacientes y la mayor parte de las investigaciones se realizan in vitro -en el laboratorio- utilizando líneas celulares, que crecen y se mantienen en el laboratorio como una única capa de células.
Enviado por:



Fecha de publicació: 18/04/2017, 13:29 h | (26) veces leída
Científicos del Grupo de Superficie Ocular del Instituto de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid y del Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) han construido un modelo 3D de la conjuntiva efectivo para estudiar las enfermedades de la superficie ocular y los efectos de nuevos medicamentos y tratamientos. El modelo se ha creado a partir de células y biomateriales de origen humano. Los investigadores, que han publicado el trabajo en la revista ‘Plos One’, han comprobado que estas construcciones 3D son capaces de funcionar como en vivo.
Las estructuras de la parte anterior del ojo, como la córnea, la lágrima y la conjuntiva, se denominan en conjunto superficie ocular. Esta última estructura, la conjuntiva, tiene una misión muy importante como protectora de la córnea para que ésta mantenga la transparencia necesaria para permitir la visión. La conjuntiva juega, por ello, un papel muy activo en la fisiopatología de conocidas enfermedades de tipo inflamatorio que afectan a la superficie ocular como el síndrome de ojo seco, el síndrome de Sjögren o la conjuntivitis alérgica, entre otras. Asimismo, las enfermedades inflamatorias de la superficie ocular son muy prevalentes entre la población mundial y los pacientes necesitan tratamientos más eficaces.
Al mismo tiempo, “los gobiernos y las compañías farmacéuticas están preocupados por el elevado coste de la investigación necesaria para desarrollar nuevos medicamentos que finalmente los encarece”, explica a DiCYT la Dra. Yolanda Diebold Luque, la investigadora del IOBA responsable del proyecto, quien apunta que en otros ámbitos distintos del ocular “los modelos tridimensionales (3D) de estudio en el laboratorio han demostrado su utilidad para investigar sobre el desarrollo de enfermedades y de nuevos medicamentos para ellas”. En este sentido, añade, “se ha comprobado que los modelos 3D proporcionan datos fiables y a la vez reducen los costes asociados a la investigación y también el número de animales empleados en los experimentos, un aspecto muy importante que demanda la sociedad y que está muy bien regulado en España y en Europa”.
En el ámbito ocular, normalmente no se pueden obtener grandes muestras de tejido de conjuntiva de los pacientes y la mayor parte de las investigaciones se realizan in vitro -en el laboratorio- utilizando líneas celulares, que crecen y se mantienen en el laboratorio como una única capa de células.
Sin embargo, “estas capas de células no reproducen la complejidad de un tejido en vivo que, entre otras cosas, no es plano y tiene una estructura 3D muy bien definida gracias a la cual funciona adecuadamente”, motivo por el cual, asegura, se plantearon desarrollar una construcción 3D de tejido de conjuntiva humana, “con el fin de disponer de un modelo más barato, fiable y reproducible, que sirva para estudiar mejor los mecanismos por los cuales se desencadenan las enfermedades inflamatorias en las que participa la conjuntiva y probar en ellos nuevos medicamentos”, precisa.
Un modelo basado en células y biomateriales de origen humano
El modelo 3D diseñado por el equipo científico vallisoletano se fundamenta en células y biomateriales de origen humano. Como ilustra Diebold Luque, “a modo de andamio donde sembrar las células se usó fibrina derivada de sangre humana, material que nos proporcionó el Centro de Hemoterapia y Hemodonación de Castilla y León, gracias a un acuerdo de investigación. Con la fibrina se construyó una matriz a la que se incorporaron fibroblastos de conjuntiva en su interior y células epiteliales en la superficie, para simular el estroma y el epitelio de una conjuntiva en vivo, respectivamente”. Ambos tipos celulares se obtuvieron de donaciones de tejido de conjuntiva de ojos humanos de cadáver.
Con todo ello, y mediante técnicas que se emplean en el campo de la Ingeniería de Tejidos, se consiguió una construcción en la que las células funcionaban normalmente y se mantenían en condiciones adecuadas para los estudios de laboratorio dos semanas.
Capaces de funcionar como en vivo
Los investigadores comprobaron que las células epiteliales de las construcciones estratificaban, es decir, eran capaces de crecer en varias capas, como lo hacen en vivo. Además, crecía un tipo particular de célula epitelial, que se llama célula caliciforme, que está especializado en producir unas proteínas denominadas mucinas, en particular la mucina MUC5AC.
Por otra parte, señala la investigadora del IOBA, se sabe que la cantidad de MUC5AC está disminuida en algunas enfermedades inflamatorias de las mencionadas más arriba, como en el síndrome de ojo seco, y aumentada en otras, como en la alergia, al igual que se conocen los estímulos desencadenantes. “Con los estímulos adecuados recreamos en el laboratorio las situaciones que hacen que esto suceda y comprobamos que las células de la construcción respondían disminuyendo o aumentando la producción de MUC5AC. También estudiamos cómo producían otras moléculas, por ejemplo la interleucina-6, como consecuencia de esos estímulos y comprobamos que lo hacían como se sabe que ocurre en las enfermedades estudiadas”, subraya.
Por ello, el equipo concluye que la construcción 3D de conjuntiva diseñada “es funcional y capaz de responder a estímulos que simulan en el laboratorio una situación de enfermedad inflamatoria”. Esto constituye una importante novedad en el ámbito de la investigación en conjuntiva, donde creen que el modelo 3D que han presentado puede tener “una muy buena acogida”.
Este trabajo constituyó la Tesis Doctoral de la Dra. Laura García Posadas, quien en estos momentos está ampliando su formación post-doctoral en un centro de investigación de la prestigiosa Harvard Medical School de Boston (Estado Unidos).

Científicos del Grupo de Superficie Ocular del Instituto de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid y del Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) han construido un modelo 3D de la conjuntiva efectivo para estudiar las enfermedades de la superficie ocular y los efectos de nuevos medicamentos y tratamientos. El modelo se ha creado a partir de células y biomateriales de origen humano. Los investigadores, que han publicado el trabajo en la revista ‘Plos One’, han comprobado que estas construcciones 3D son capaces de funcionar como en vivo.

Las estructuras de la parte anterior del ojo, como la córnea, la lágrima y la conjuntiva, se denominan en conjunto superficie ocular. Esta última estructura, la conjuntiva, tiene una misión muy importante como protectora de la córnea para que ésta mantenga la transparencia necesaria para permitir la visión. La conjuntiva juega, por ello, un papel muy activo en la fisiopatología de conocidas enfermedades de tipo inflamatorio que afectan a la superficie ocular como el síndrome de ojo seco, el síndrome de Sjögren o la conjuntivitis alérgica, entre otras. Asimismo, las enfermedades inflamatorias de la superficie ocular son muy prevalentes entre la población mundial y los pacientes necesitan tratamientos más eficaces.

Al mismo tiempo, “los gobiernos y las compañías farmacéuticas están preocupados por el elevado coste de la investigación necesaria para desarrollar nuevos medicamentos que finalmente los encarece”, explica a DiCYT la Dra. Yolanda Diebold Luque, la investigadora del IOBA responsable del proyecto, quien apunta que en otros ámbitos distintos del ocular “los modelos tridimensionales (3D) de estudio en el laboratorio han demostrado su utilidad para investigar sobre el desarrollo de enfermedades y de nuevos medicamentos para ellas”. En este sentido, añade, “se ha comprobado que los modelos 3D proporcionan datos fiables y a la vez reducen los costes asociados a la investigación y también el número de animales empleados en los experimentos, un aspecto muy importante que demanda la sociedad y que está muy bien regulado en España y en Europa”.

En el ámbito ocular, normalmente no se pueden obtener grandes muestras de tejido de conjuntiva de los pacientes y la mayor parte de las investigaciones se realizan in vitro -en el laboratorio- utilizando líneas celulares, que crecen y se mantienen en el laboratorio como una única capa de células.

Sin embargo, “estas capas de células no reproducen la complejidad de un tejido en vivo que, entre otras cosas, no es plano y tiene una estructura 3D muy bien definida gracias a la cual funciona adecuadamente”, motivo por el cual, asegura, se plantearon desarrollar una construcción 3D de tejido de conjuntiva humana, “con el fin de disponer de un modelo más barato, fiable y reproducible, que sirva para estudiar mejor los mecanismos por los cuales se desencadenan las enfermedades inflamatorias en las que participa la conjuntiva y probar en ellos nuevos medicamentos”, precisa.

Un modelo basado en células y biomateriales de origen humano

El modelo 3D diseñado por el equipo científico vallisoletano se fundamenta en células y biomateriales de origen humano. Como ilustra Diebold Luque, “a modo de andamio donde sembrar las células se usó fibrina derivada de sangre humana, material que nos proporcionó el Centro de Hemoterapia y Hemodonación de Castilla y León, gracias a un acuerdo de investigación. Con la fibrina se construyó una matriz a la que se incorporaron fibroblastos de conjuntiva en su interior y células epiteliales en la superficie, para simular el estroma y el epitelio de una conjuntiva en vivo, respectivamente”. Ambos tipos celulares se obtuvieron de donaciones de tejido de conjuntiva de ojos humanos de cadáver.

Con todo ello, y mediante técnicas que se emplean en el campo de la Ingeniería de Tejidos, se consiguió una construcción en la que las células funcionaban normalmente y se mantenían en condiciones adecuadas para los estudios de laboratorio dos semanas.

Capaces de funcionar como en vivo

Los investigadores comprobaron que las células epiteliales de las construcciones estratificaban, es decir, eran capaces de crecer en varias capas, como lo hacen en vivo. Además, crecía un tipo particular de célula epitelial, que se llama célula caliciforme, que está especializado en producir unas proteínas denominadas mucinas, en particular la mucina MUC5AC.

Por otra parte, señala la investigadora del IOBA, se sabe que la cantidad de MUC5AC está disminuida en algunas enfermedades inflamatorias de las mencionadas más arriba, como en el síndrome de ojo seco, y aumentada en otras, como en la alergia, al igual que se conocen los estímulos desencadenantes. “Con los estímulos adecuados recreamos en el laboratorio las situaciones que hacen que esto suceda y comprobamos que las células de la construcción respondían disminuyendo o aumentando la producción de MUC5AC. También estudiamos cómo producían otras moléculas, por ejemplo la interleucina-6, como consecuencia de esos estímulos y comprobamos que lo hacían como se sabe que ocurre en las enfermedades estudiadas”, subraya.

Por ello, el equipo concluye que la construcción 3D de conjuntiva diseñada “es funcional y capaz de responder a estímulos que simulan en el laboratorio una situación de enfermedad inflamatoria”. Esto constituye una importante novedad en el ámbito de la investigación en conjuntiva, donde creen que el modelo 3D que han presentado puede tener “una muy buena acogida”.

Este trabajo constituyó la Tesis Doctoral de la Dra. Laura García Posadas, quien en estos momentos está ampliando su formación post-doctoral en un centro de investigación de la prestigiosa Harvard Medical School de Boston (Estado Unidos).





También te puede interesar:

Tecnologías verdes que solucionan problemas reales

Tecnologías verdes que solucionan problemas reales
Paneles solares a medida La empresa estadounidense Sunflare quiere cambiar el mundo ofreciendo un tipo de paneles solares revolucionaros, que se pueden cortar, para darles cualquier forma y se adhieren a las superficies con una cinta especial; recientemente han recibido la certificación de la IEC (Comisión Electrotécnica Internacional).   Cada celda de Sunflare posee un código QR, que registra cada paso de...

Seguir leyendo

Tecnologías verdes para un futuro mejor

Tecnologías verdes para un futuro mejor
Breves y buenas noticias El Reino Unido finalmente ha conseguido sacar adelante su Estrategia de Crecimiento Limpio, que fue recientemente anunciada y en la que el gobierno invertirá en los próximos 4 años, unos £ 2.500 millones (casi 2800 millones de €). El plan está enfocado a fomentar las innovaciones en tecnologías verdes, con el fin de disminuir significativamente, la huella de carbono del país. Por...

Seguir leyendo

No te pierdas estos videos:

Océanos
369092 visitas

Los océanos cubren casi las tres cuartas partes de la superficie de la Tierra. Esta película capta la extraordinaria envergadura de estas aguas...

Se han buscado muchos nombres para intentar describir los materiales que flotan en el Pacífico Norte, aproximadamente entre los 135 y los 155 grados de...

Envie su Comentario
SU NOMBRE:
SU E-MAIL:
SU COMENTARIO:
Especial Formacion 2017/2018
PRÓXIMOS EVENTOS
24 / 10 / 2017 >
POLLUTEC Maroc
24 / 10 / 2017 > AVENIDA LEHENDAKARI AGUIRRE, 5 (48014) BILBAO
Jornada sobre paneles solares híbridos en Bilbao
02 / 11 / 2017 > RONDA VALENCIA, 2, 28012 MADRID
III Foro internacional de Restauración Ecológica Creando Redes
06 / 11 / 2017 > C/ SECUNDINO ALONSO, 98 1ª PLANTA
Africagua Canarias 2017
07 / 11 / 2017 >
Ecomondo / Key Energy 2017
09 / 11 / 2017 > FERIA DE MADRID - IFEMA (PABELLóN 9)
BioCultura Madrid 2017
10 / 11 / 2017 > RECINTO DE MONTJUïC AV. REINA MARIA CRISTINA, S/N
Expominer 2017
10 / 11 / 2017 > RECINTO DE MONTJUïC AV. REINA MARIA CRISTINA, S/N
Expominer 2017
Ver todos los Eventos
FORMACIÓN: PRÓXIMAMENTE
DEL 27 / 10 / 2017 AL 00 / 00 / 0000 > MADRID Y BARCELONA
Máster en Tecnología y Gestión del Agua Executive
DEL 02 / 11 / 2017 AL 00 / 00 / 0000 > ONLINE
Módulo de Posgrado en Captación y Tratamiento de Agua Potable
DEL 02 / 11 / 2017 AL 00 / 00 / 0000 > ONLINE
Módulo de Posgrado en Depuración Urbana Online
DEL 02 / 11 / 2017 AL 00 / 00 / 0000 > ONLINE
Módulo de Posgrado en Redes de Distribución de Agua Potable
DEL 03 / 11 / 2017 AL 00 / 00 / 0000 > ONLINE
Módulo de Posgrado en Drenaje Urbano
DEL 09 / 11 / 2017 AL 12 / 01 / 2019 > ONLINE
Máster en Gestión de las Energías Renovables
DEL 10 / 11 / 2017 AL 19 / 05 / 2018 > ZARAGOZA
Máster en Economía Circular Aplicada
DEL 19 / 11 / 2017 AL 00 / 00 / 0000 > BARCELONA
IUSC. Máster en medio ambiente y energías renovables
Ver todos los Cursos y Masters
BLOGGERS DE ECOTICIAS

Hoy, con el recuerdo de la sangre de los atentados todavía muy fresco, hoy, que esa mezcla de dolor, pena y rabia que no tiene nombre todavía escuece,...

Por Ángel Juárez

El clavel del aire es el género más grande de la familia de las bromelias, que representa aproximadamente 550 de las más de 2.500 especies de...

Por Javier Pavón

Proyectos "Green" están surgiendo en todo el Reino Unido para fortalecer  la población local y construir comunidades Una nueva economía está entrando...

Por VGomez

 
COPYRIGHT © Grupo ECOticias SL TODOS LOS DERECHOS RESERVADOS